Wednesday, June 30, 2010

Balanced Microphone Preamplifier

The preamplifier is intended for use with dynamic (moving coil–MC) microphones with an impedance up to 200 Ω and balanced terminals. It is a fairly simple design, which may also be considered as a single stage instrument amplifier based on a Type NE5534 op amp. To achieve maximum common-mode rejection (CMR) with a balanced signal, the division ratios of the dividers (R1-R4 and R2-R5 respectively) at the inputs of the op amp must be identical. Since this may be difficult to achieve in practice, a preset potentiometer, P1, is connected in series with R5. The preset enables the common-mode rejection to be set optimally. Capacitor C1 prevents any direct voltage at the input, while resistor R7 ensures stability of the amplifier with capacitive loads.

Balanced Microphone Preamplifier Circuit DiagramPower supply:Power Supply Circuit Diagram For Balanced Microphone PreamplifierResistor R3 prevents the amplifier going into oscillation when the input is open circuit. If the microphone cable is of reasonable length, R3 is not necessary, since the parasitic capacitance of the cable ensures stability of the amplifier. It should be noted, however, that R3 improves the CMR from >70 dB to >80 dB. Performance of the preamplifier is very good. The THD+N (total harmonic distortion plus noise) is smaller than 0.1% with an input signal of 1 mV and a source impedance of 50 Ω. Under the same conditions, the signal-to-noise ratio is –62.5 dBA. With component values as specified, the gain of the amplifier is 50 dB (´316). After careful adjustment of P1 at 1 kHz, the CMR, without R3, is 120 dB. The supply voltage is ±15 V. The amplifier draws a current at that voltage of about 5.5 mA. Note the decoupling of the supply lines with L1, L2, C2–C5.
Continue[...]

Automatic Light Dimmer

In many cases, the dimmer presented here may be built into a wall-mounted box containing the light switch. It is intended for use with 240 V incandescent lamps only. When it is fitted, and the light is switched on, the lamp does not come on fully for about 400 ms (which is not noticeable). When the light is switched off, it stays on unchanged for about 20 s, and then goes out gradually. This has the advantage that it is not immediately dark when the light is switched off. When light switch S1 is turned on, capacitor C2 is charged via R1, C1 and bridge rectifier D1–D4. Zener diode D5 limits the potential across C2 to about 15 V. After a short while, diode D6 lights, whereupon a potential difference ensues across light sensitive resistor R3, which is sufficient to trigger triac Tr1.

Automatic Light Dimmer Circuit Diagram
The light then comes on. When the light switch is turned off, C2 is discharged via P1, R2 and D6. When the potential across C2 drops, the brightness of the LED diminishes, so that the p.d. across R3 also drops. The increasing resistance of R3 effects phase angle control of the triac so that the light is dimmed gradually. The dimming time may be altered with P1 within the time range determined by network R2-C2. The circuit operates correctly only, of course, when the LDR is not exposed to light other than that from the LED. The type of LDR is not particularly important, as long as it is not too long: in the prototype, a model with a length of 5 mm was used.
Continue[...]

Auto Power Off

We are surrounded by battery operated equipment of all kinds, and this array is growing still. Manufacturers and designers lean over backwards to make sure that their equipment draws a small current and can thus be operated by a battery. This has its flip side, too. because even if the equipment in question draws only a small current, when it is not switched off, the battery is flat after a few days or weeks. The circuit presented here can prevent this happening. It may be added to all kinds of equipment operating from a 9 V battery and switches this off automatically one minute after a preset time has elapsed. The peak switching current is 20 mA, which is more than enough for most applications.

automatic power offThe switch is formed by a p-n-p darlington, T1, which is actuated by push-button switch S1. The very high amplification of the darlington enables it to be kept on fairly long with the aid of a relatively small-value capacitor, C1 (= 100 µF). Resistor R3 limits the charging current of C1 to ensure a long life of S1. Resistors R1 and R2, in conjunction with C1, determine the switch-on time. When this time has elapsed, R1 ensures that T1 is switched off. Since the darlington can handle a UBE of –10 V, a polarity protection diode is not needed.
Continue[...]

Active Short-Wave Antenna

The circuit presented here illustrates the fact that in spite of all kinds of new component and technology, it is still possible to design useful, and interesting, circuits. The circuit is based on two well-established transistors, a Type BF256C and a BF494. In conjunction with the requisite resistors and capacitors, these form a well-working antenna amplifier. Note that they are direct coupled. Transistor T1 is the input amplifier cum buffer, while the BF494, in a common-ground configuration, provides the necessary amplification. The amplifier is designed for operation at frequencies between 10 MHz and 30 MHz, which is the larger part of the short-wave range, and has a gain of 20 dB.

Active Short-Wave Antenna Circuit DiagramInductor L1 is wound on an Amidon core Type T-37-6. The primary consists of 2 turns, and the secondary of 12 turns 0.3 mm dia. enameled copper wire. The number of turns may be experimented with for other frequency ranges. The input circuit is tuned to the wanted station with capacitor C1. The response of the tuned circuit is fairly broad, so that correct tuning is easy. The circuit is powered by a well-decoupled mains supply converter that has an output of 9–12 V. The circuit draws a current of about 5mA.
Continue[...]

6-Channel Running Light

The circuit of the running light comprises two integrated circuits (ICs), a resistor, a capacitor and seven light-emitting diodes (LEDs), Decade scaler IC2 ensures that the LEDs light sequentially. The rate at which this happens is determined by the clock at pin 14. The clock is generated by IC1, which is arranged as an astable multivibrator. Its frequency is determined by R1-C1. The touch switch, consisting of two small metal disks is optional. When switch S1 is in position ‘off’, the circuit may be actuated by the touch switch. By the way, this enables the circuit to be used as an electronic die (in which case the LEDs have to be numbered from 1 to 6). The running light is powered by a 9 V battery or mains adapter. It draws a current not exceeding 20 mA.

6-Channel Running Light
Continue[...]

4-Bit Analogue to Digital Converter

The operation of the converter is based on the weighted adding and transferring of the analogue input levels and the digital output levels. It consists of comparators and resistors. In theory, the number of bits is unlimited, but each bit needs a comparator and several coupling resistors. The diagram shows a 4-bit version. The value of the resistors must meet the following criteria:
  • R1:R2 = 1:2;
  • R3:R4:R5 = 1:2:4;
  • R6:R7:R8:R9 = 1:2:4:8.
The linearity of the converter depends on the degree of precision of the value of the resistors with respect to the resolution of the converter, and on the accuracy of the threshold voltage of the comparators. This threshold level must be equal, or nearly so, to half the supply voltage. Moreover, the comparators must have as low an output resistance as possible and as high an input resistance with respect to the load resistors as feasible. Any deviation from these requirements affects the linearity of the converter adversely.

4-Bit Analogue to Digital Converter Circuit DiagramIf the value of the resistors is not too low, the use of inverters with an FET (field-effect transistor) input leads to a near-ideal situation. In the present converter, complementary metal-oxide semiconductor (CMOS) inverters are used, which, in spite of their low gain, give a reasonably good performance. If standard comparators are used, take into account the output voltage range and make sure that the potential at their non-inverting inputs is set to half the supply voltage. If high accuracy is a must, comparators Type TLC3074 or similar should be used.

This type has a totem-pole output. The non-inverting inputs should be interlinked and connected to the tap of a a divider consisting of two 10 kΩ resistors across the supply lines. It is essential that the converter is driven by a low-resistance source. If necessary, this can be arranged via a suitable op amp input buffer. The converter draws a current not exceeding 5 mA.
Continue[...]

Tuesday, June 29, 2010

Alarm Power Supply

This Power Supply is suitable for the Modular Burglar Alarm. However, it has other applications. It is designed to provide an output of 12-volts, with a current of up to 1-amp. In the event of mains failure, the back-up battery takes over automatically. When the mains is restored, the battery recharges. Use a genuine alarm type back-up battery. They are maintenance-free, and their terminals can be held at 13v8 for many years, with no ill effects. A smaller or larger capacity battery may be used, without circuit modification. Use the 2-amp version of the 7805. It needs the larger heatsink because it has to dissipate a lot of energy, especially when called upon to recharge a flat battery.

This heatsink is at 9v1, and must NOT be connected to ground. The 7812 never has to dissipate more than 2-watts, so its heatsink can be smaller.Many of the components, which are shown lying flat on the board, are actually mounted upright. The links are bare copper wire on the component side. The heatsinks are folded strips of aluminium, about 2mm thick. Use a well-insulated panel mounted fuse holder for the mains supply to the transformer, and fit it with a 1-amp fuse.

Continue[...]

Infrared Remote Control Tester

As I was developing my IR Extender Circuit, I needed to find a way of measuring the relative intensities of different Infra red light sources. This circuit is the result of my research. I have used a photodiode, SFH2030 as an infra red sensor. A MOSFET opamp, CA3140 is used in the differential mode to amplify the pulses of current from the photodiode. LED1 is an ordinary coloured led which will light when IR radiation is being received. The output of the opamp, pin 6 may be connected to a multimeter set to read DC volts. Infra red remote control strengths can be compared by the meter reading, the higher the reading, the stronger the infra red light. I aimed different remote control at the sensor from about 1 meter away when comparing results. For every microamp of current through the photodiode, about 1 volt is produced at the output. A 741 or LF351 will not work in this circuit. Although I have used a 12 volt power supply, a 9 volt battery will also work here.

Infra-red Remote Control Tester Circuit Diagram
Continue[...]

Fast Electronic Fuse


A fast electronic fuse designed to operate on 230V AC with an adjustable trip current.


When the current through the load exceeds a level determined by the position of the wiper on the 1k wire-wound pot, this circuit cuts off the load immediately. If S1 is open, the range is approximately 300-650 mA, and 0.8-2A when it is closed. The key variable in the operation of the fuse is the voltage drop across the power resistor(s) which are connected in series with the load. This voltage drop is directly proportional to the current the load draws. When this current is low, the voltage across the resistors is also small and cannot trigger T1. At the same time the gate of T2 is fed from a little power supply built around a negative voltage regulator. T2 is conducting and the load is on.

If the current through the load then gets too high, so that the voltage created across the resistor(s) can trigger the gate of T1 through the 330R resistor and the pot: T1 starts to conduct, swiftly taking away all the current from the gate of T2. The voltage drop across T1 (MT1-MT2) will then be only 0.7 V and T2 will be firmly off. T1 stays this way all until the momentary (normally closed, "push-to-break") Reset push-button is pressed: this causes the current through T1 to drop below the hold level and forces this triac to turn off. Releasing the Reset button re-enables the current flow to and through the gate of T2, switching it on.

T1 must be a TIC225M, as this particular type has a very low trigger current. T2 is a snubberless BTA12-600CW which cannot be replaced with a 'normal' triac, but maybe with a BTA12-600BW which also can be used without a snubber circuit, but has a little less sensitive gate (not a problem in this design). If the gates of snubberless triacs are DC-controlled and they are switching AC, the DC to control the gates MUST be negative - flowing from the gate, hence the negative voltage regulator. (Snubberless is in fact a registered trade mark belonging to ST.) The output AC voltage will be 1-5 volts below the input level, depending on the load. Varistors are 250V AC. Pay attention to the "reverse" polarities of the electrolytic capacitor and the diodes before the 7906.

DANGER!
This circuit connects directly to 220-230V AC which can be lethal! Please do not attempt to build any of the circuits/projects unless you have the expertise, skill and concentration that will help you avoid an injury. Please see Disclaimer on this site.
Continue[...]

Logic PSU With Over-Voltage Protection

A simple 5 Volt regulated PSU featuring overvoltage protection. The 5 volt regulated power supply for TTL and 74LS series integrated circuits, has to be very precise and tolerant of voltage transients. These IC's are easily damaged by short voltage spikes. A fuse will blow when its current rating is exceeded, but requires several hundred milliseconds to respond. This circuit will react in a few microseconds, triggered when the output voltage exceeds the limit of the zener diode. This circuit uses the crowbar method, where a thyristor is employed and short circuits the supply, causing the fuse to blow. This will take place in a few microseconds or less, and so offers much greater protection than an ordinary fuse.


If the output voltage exceed 5.6Volt, then the zener diode will conduct, switching on the thyristor (all in a few microseconds), the output voltage is therefore reduced to 0 volts and sensitive logic IC's will be saved. The fuse will still take a few hundred milliseconds to blow but this is not important now because the supply to the circuit is already at zero volts and no damage can be done. The dc input to the regulator needs to be a few volts higher than the regulator voltage. In the case of a 5v regulator, I would recommend a transformer with secondary voltage of 8-10volts ac. By choosing a different regulator and zener diode, you can build an over voltag trip at any value.
Continue[...]

Supply Voltage Indicator


A novel supply voltage monitor which uses a LED to show the status of a power supply.


This simple and slightly odd circuit can clearly show the level of the supply voltage (in a larger device): as long as the indicator has good 12 volts at its input, LED1 gives steady, uninterrupted (for the naked eye) yellow light. If the input voltage falls below 11 V, LED1 will start to blink and the blinking will just get slower and slower if the voltage drops further - giving very clear and intuitive representation of the supply's status. The blinking will stop and LED1 will finally go out at a little below 9 volts. On the other hand, if the input voltage rises to 13 V, LED2 will start to glow, getting at almost full power at 14 V. The characteristic voltages can be adjusted primarily by adjusting the values of R1 and R4. The base-emitter diode of T2 basically just stands in for a zener diode.

The emitter-collector path of T1 is inversely polarized and if the input voltage is high enough - T1 will cause oscillations and the frequency will be proportional to the input voltage. The relaxation oscillator ceases cycling when the input voltage gets so low that it no longer can cause breakdown along the emitter-collector path. Not all small NPN transistors show this kind of behavior when inversely polarized in a similar manner, but many do. BC337-40 can start oscillations at a relatively low voltage, other types generally require a volt or two more. If experimenting, be careful not to punch a hole through the device under test: they oscillate at 9-12 V or not at all.
Continue[...]

Connection Tester


A low resistance ( 0.25 - 4 ohm) continuity tester for checking soldered joints and connections.


This simple circuit uses a 741 op-amp in differential mode as a continuity tester. The voltage difference between the non-inverting and inverting inputs is amplified by the full open loop gain of the op-amp. Ignore the 470k and the 10k control for the moment, and look at the input of the op-amp. If the resistors were perfectly matched, then the voltage difference would be zero and output zero. However the use of the 470k and 10k control allows a small potential difference to be applied across the op-amp inputs and upset the balance of the circuit. This is amplified causing the op-amp output to swing to full supply voltage and light the LED's.

Connection Tester Circuit DiagramSetting Up and Testing:

The probes should first be connected to a resistor of value between 0.22 ohm and 4ohm. The control is adjusted until the LED's just light with the resistance across the probes. The resistor should then be removed and probes short circuited, the LED's should go out. As the low resistance value is extremely low, it is important that the probes, (whether crocodile clips or needles etc) be kept clean, otherwise dirt can increase contact resistance and cause the circuit to mis-operate. The circuit should also work with a MOSFET type op-amp such as CA3130, CA3140, and JFET types, e.g. LF351. If the lED's will not extinguish then a 10k preset should be wired across the offset null terminals, pins 1 and 5, the wiper of the control being connected to the negative battery terminal.
Continue[...]

Headphone Amplifier Using Discrete Components

An amplifier to drive low to medium impedance headphones built using discrete components.

Both halves of the circuit are identical. Both inputs have a dc path to ground via the input 47k control which should be a dual log type potentiometer. The balance control is a single 47k linear potentiometer, which at center adjustment prevents even attenuation to both left and right input signals. If the balance control is moved towards the left side, the left input track has less resistance than the right track and the left channel is reduced more than the right side and vice versa. The preceding 10k resitors ensure that neither input can be "shorted" to earth.

Headphone Amplifier Circuit DiagramAmplification of the audio signal is provided by a single stage common emitter amplifier and then via a direct coupled emitter follower. Overall gain is less than 10 but the final emitter follower stage will directly drive 8 ohm headphones. Higher impedance headphones will work equally well. Note the final 2k2 resistor at each output. This removes the dc potential from the 2200u coupling capacitors and prevents any "thump" being heard when headphones are plugged in. The circuit is self biasing and designed to work with any power supply from 6 to 20 Volts DC.
Continue[...]

Audio Amplifier Output Relay Delay

This is a simple circuit which I built to one of my audio amplifier projects to control the speaker output relay. The purpose of this circuit is to control the relay which turns on the speaker output relay in the audio amplifier. The idea of the circuit is wait around 5 seconds ofter the power up until the speakers are switched to the amplifier output to avoid annoying "thump" sound from the speakers. Another feature of this circuit is that is disconnects the speaker immediately when the power in the amplifier is cut off, so avoiding sometimes nasty sounds when you turn the equipments off.

Parts
C1 = 100 uF 40V electrolytic
C2 = 100 uF 40V electrolytic
D1 = 1N4007
D2 = 1N4148
Q1 = BC547
R1 = 33 kohm 0.25W
R2 = 2.2 kohm 0.25W
RELAY 24V DC relay, coil resistance >300 ohm

Circuit operation:

Then power is applied to the power input of the circuit, the positive phase of AC voltage charges C1. Then C2 starts to charge slowly through R1. When the voltage in C2 rises, the emitter output voltage of Q1 rises together with voltage on C2. When the output voltage of Q2 is high enough (typically around 16..20V) the relay goes to on state and the relay witches connect the speakers to the amplifier output. It takes typically around 5 seconds after power up until the relay starts to conduct (at absolute time depends on the size of C2, relay voltage and circuit input voltage). When the power is switched off, C1 will loose it's energy quite quickly. Also C2 will be charged quite quickly through R2. In less than 0.5 seconds the speakers are disconnected from the amplifier output.

Notes on the circuit:

This circuit is not the most accurate and elegant design, but it has worked nicely in my small home-built PA amplifier. This circuit can be also used in many other applications where a turn on delay of few seconds is needed. The delay time can be increased by using bigger C2 and decreased by using a smaller C2 value. Note that the delay is not very accurate because of simplicity of this circuit and large tolerance of typical electrolytic capacitors (can be -20%..+50% in some capacitors).
Continue[...]

Fuse Monitor

The idea for this project may have come to me in a flash of inspiration, and its a very simple way to check if a fuse has blown without removing it from its holder. The simplicity of this circuit uses just two components, but with just one resistor and an LED this circuit gives visual indication of when a fuse has blown. LED1 is normally off, being "short circuited " by the fuse, F1. Should the inevitable "big-bang" happen in your workshop then LED1 will illuminate and led you know all about it! Please note that the LED will only illuminate under fault conditions, i.e. with a short circuit or shunt on the load. In this case the current is reduced to a safe level by R1.

Fuse Monitor Circuit Diagram
Continue[...]

Transformerless Power Supply

This circuit will supply up to about 20ma at 12 volts. It uses capacitive reactance instead of resistance; and it doesn't generate very much heat.The circuit draws about 30ma AC. Always use a fuse and/or a fusible resistor to be on the safe side. The values given are only a guide. There should be more than enough power available for timers, light operated switches, temperature controllers etc, provided that you use an optical isolator as your circuit's output device. (E.g. MOC 3010/3020) If a relay is unavoidable, use one with a mains voltage coil and switch the coil using the optical isolator.C1 should be of the 'suppressor type'; made to be connected directly across the incoming Mains Supply.

They are generally covered with the logos of several different Safety Standards Authorities. If you need more current, use a larger value capacitor; or put two in parallel; but be careful of what you are doing to the Watts. The low voltage 'AC' is supplied by ZD1 and ZD2. The bridge rectifier can be any of the small 'Round', 'In-line', or 'DIL' types; or you could use four separate diodes. If you want to, you can replace R2 and ZD3 with a 78 Series regulator. The full sized ones will work; but if space is tight, there are some small 100ma versions available in TO 92 type cases. They look like a BC 547. It is also worth noting that many small circuits will work with an unregulated supply.

Transformerless Power Supply Circuit Diagram
You can, of course, alter any or all of the Zenner diodes in order to produce a different output voltage. As for the mains voltage, the suggestion regarding the 110v version is just that, a suggestion. I haven't built it, so be prepared to experiment a little. I get a lot of emails asking if this power supply can be modified to provide currents of anything up to 50 amps. It cannot. The circuit was designed to provide a cheap compact power supply for Cmos logic circuits that require only a few milliamps. The logic circuits were then used to control mains equipment (fans, lights, heaters etc.) through an optically isolated triac.

If more than 20mA is required it is possible to increase C1 to 0.68uF or 1uF and thus obtain a current of up to about 40mA. But 'suppressor type' capacitors are relatively big and more expensive than regular capacitors; and increasing the current means that higher wattage resistors and zener diodes are required. If you try to produce more than about 40mA the circuit will no longer be cheap and compact, and it simply makes more sense to use a transformer. The Transformerless Power Supply Support Material provides a complete circuit description including all the calculations.

Web-masters Note:

I have had several requests for a power supply project without using a power supply. This can save the expense of buying a transformer, but presents potentially lethal voltages at the output terminals. Under no circumstances should a beginner attempt to build such a project.

Important Notice:

Electric Shock Hazard. In the UK,the neutral wire is connected to earth at the power station. If you touch the "Live" wire, then depending on how well earthed you are, you form a conductive path between Live and Neutral. DO NOT TOUCH the output of this power supply. Whilst the output of this circuit sits innocently at 12V with respect to (wrt) the other terminal, it is also 12V above earth potential. Should a component fail then either terminal will become a potential shock hazard.

MAINS ELECTRICITY IS VERY DANGEROUS.

If you are not experienced in dealing with it, then leave this project alone. Although Mains equipment can itself consume a lot of current, the circuits we build to control it, usually only require a few milliamps. Yet the low voltage power supply is frequently the largest part of the construction and a size-able portion of the cost.
Continue[...]

Guitar Control

Stand-alone, 9V battery powered unit, Three-level input selector, three-band tone control

This preamplifier was designed as a stand-alone portable unit, useful to control the signals generated by guitar pick-ups, particularly the contact "bug" types applied to acoustic instruments. Obviously it can be used with any type of instrument and pick-up. It features a -10dB, 0dB and +10dB pre-set input selector to adjust input sensitivity, in order to cope with almost any pick-up type and model. A very long battery life is ensured by the incredibly low current consumption of this circuit, i.e. less than 800µA.

Guitar Control Circuit DiagramParts:

P1,P2_________100K Linear Potentiometers
P3____________470K Linear Potentiometer
P4_____________10K Log. Potentiometer
R1____________150K 1/4W Resistor
R2____________220K 1/4W Resistor
R3_____________56K 1/4W Resistor
R4____________470K 1/4W Resistor
R5,R6,R7_______12K 1/4W Resistors
R8,R9___________3K9 1/4W Resistors
R10,R11_________1K8 1/4W Resistors
R12,R13________22K 1/4W Resistors
C1____________220nF 63V Polyester Capacitor
C2,C8___________4µ7 63V Electrolytic Capacitors
C3_____________47nF 63V Polyester Capacitor
C4,C6___________4n7 63V Polyester Capacitors
C5_____________22nF 63V Polyester Capacitor
C7,C9_________100µF 25V Electrolytic Capacitors
IC1___________TL062 Low current BIFET Dual Op-Amp
J1,J2__________6.3mm. Mono Jack sockets
SW1______________1 pole 3 ways rotary or slider switch
SW2______________SPST Switch
B1_______________9V PP3 Battery Clip for PP3 Battery

Circuit operation:

IC1A op-amp is wired as an inverting amplifier, having its gain set by a three ways switch inserting different value resistors in parallel to R4. This input stage is followed by an active three-band tone control stage having unity gain when controls are set in their center position and built around IC1B.

Technical data:

Frequency response:
20Hz to 20KHz -0.5dB, controls flat.
Tone control frequency range:
±15dB @ 30Hz; ±19dB @ 1KHz; ±16dB @ 10KHz.
Maximum input voltage (controls flat):
900mV RMS @ +10dB input gain; 7.5V RMS @ -10dB input gain.
Maximum undistorted output voltage:
2.5V RMS.
Total Harmonic Distortion measured @ 2V RMS output:
<0.012% @ 1KHz; <0.03% @ 10KHz.
THD @ 1V RMS output:
less 0.01%
Total current drawing:
less 800µA.
Continue[...]

22W Stereo Amplifier Using TDA1554

Here is the 22 watt stereo audio power amplifier circuit diagram based on TDA1554 and integrated circuit from NXP semiconductors (formerly PHILIPS semiconductors). It is very simple and useful circuit for amplify the stereo signals .The circuit dissipates roughly 28 watts of heat, so a good heatsink is necessary. The chip should run cool enough to touch with the proper heatsink installed .the circuit operates at 12 Volts at about 5 Amps at full volume. Lower volumes use less current, and therefore produce less heat. R1 is also a 5% resistor.

Continue[...]

Cat And Dog Repellent

The electronic dog repellent circuit diagram below is a high output ultrasonic transmitter which is primarily intended to act as a dog and cat repeller, which can be used individuals to act as a deterrent against some animals. It should NOT be relied upon as a defence against aggressive dogs but it may help distract them or encourage them to go away and do not consider this as an electronic pest repeller. The ultrasonic dog repellant uses a standard 555 timer IC1 set up as an oscillator using a single RC network to give a 40 kHz square wave with equal mark/space ratio.

This frequency is above the hearing threshold for humans but is known to be irritating frequency for dog and cats. Since the maximum current that a 555 timer can supply is 200mA an amplifier stage was required so a high-power H-bridge network was devised, formed by 4 transistors TR1 to TR4. A second timer IC2 forms a buffer amplifier that feeds one input of the H-bridge driver, with an inverted waveform to that of IC1 output being fed to the opposite input of the H-bridge.

This means that conduction occurs through the complementary pairs of TR1/TR4 and TR2/TR3 on alternate marks and spaces, effectively doubling the voltage across the ultrasonic transducer, LS1. This is optimised to generate a high output at ultrasonic frequencies. This configuration was tested by decreasing the frequency of the oscillator to an audible level and replacing the ultrasonic transducer with a loudspeaker; the results were astounding. If the dog repellent circuit was fed by a bench power supply rather than a battery that restrict the available current, the output reached 110dB with 4A running through the speaker which is plenty loud enough!

The Dog and Cat repellent was activated using a normal open switch S1 to control the current consumption, but many forms of automatic switching could be used such as pressure sensitive mats, light beams or PIR sensors. Thus it could be utilize as part of a dog or cat deterrent system to help prevent unwanted damage to gardens or flowerbeds, or a battery powered version can be carried for portable use. Consider also using a lead-acid battery if desired, and a single chip version could be built using the 556 dual timer IC to save space and improve battery life.
Continue[...]

Infra-Red Level Detector

Useful for liquids level detection and proximity devices, Up to 50 cm. range, optional relay operation

This circuit is useful in liquids level or proximity detection. It operates detecting the distance from the target by reflection of an infra-red beam. It can safely detect the level of a liquid in a tank without any contact with the liquid itself. The device's range can be set from a couple of cm. to about 50 cm. by means of a trimmer. Range can vary, depending on infra-red transmitting and receiving LEDs used and is mostly affected by the color of the reflecting surface. Black surfaces lower greatly the device's sensitivity.

Parts:

R1_____________10K 1/4W Resistor
R2,R5,R6,R9_____1K 1/4W Resistors
R3_____________33R 1/4W Resistor
R4,R8___________1M 1/4W Resistors
R7_____________10K Trimmer Cermet
R10____________22K 1/4W Resistor
C1,C4___________1µF 63V Electrolytic or Polyester Capacitors
C2_____________47pF 63V Ceramic Capacitor
C3,C5,C6______100µF 25V Electrolytic Capacitors
D1_____________Infra-red LED
D2_____________Infra-red Photo Diode (see Notes)
D3,D4________1N4148 75V 150mA Diode
D5______________LED (Any color and size)
D6,D7________1N4002 100V 1A Diodes
Q1____________BC327 45V 800mA PNP Transistor
IC1_____________555 Timer IC
IC2___________LM358 Low Power Dual Op-amp
IC3____________7812 12V 1A Positive voltage regulator IC
RL1____________Relay with SPDT 2A @ 220V switch Coil Voltage 12V. Coil resistance 200-300 Ohm
J1_____________Two ways output socket

Circuit operation:

IC1 forms an oscillator driving the infra-red LED by means of 0.8mSec. pulses at 120Hz frequency and about 300mA peak current. D1 & D2 are placed facing the target on the same line, a couple of centimeters apart, on a short breadboard strip. D2 picks-up the infra-red beam generated by D1 and reflected by the surface placed in front of it. The signal is amplified by IC2A and peak detected by D4 & C4. Diode D3, with R5 & R6, compensates for the forward diode drop of D4. A DC voltage proportional to the distance of the reflecting object and D1 & D2 feeds the inverting input of the voltage comparator IC2B. This comparator switches on and off the LED and the optional relay via Q1, comparing its input voltage to the reference voltage at its non-inverting input set by the Trimmer R7.

Notes:
  • Power supply must be regulated (hence the use of IC3) for precise reference voltage. The circuit can be fed by a commercial wall plug-in adapter, having a DC output voltage in the range 12-24V.
  • Current drawing: LED off 40mA; LED and Relay on 70mA @ 12V DC supply.
  • R10, C6, Q1, D6, D7, RL1 and J1 can be omitted if relay operation is not required.
  • The infra-red Photo Diode D2, should be of the type incorporating an optical sunlight filter: these components appear in black plastic cases. Some of them resemble TO92 transistors: in this case, please note that the sensitive surface is the curved, not the flat one.
  • Avoid sun or artificial light hitting directly D1 & D2.
  • Usually D1-D2 optimum distance lies in the range 1.5-3 cm.
Continue[...]

Park-Aid Modification


Three-step beeps signal bumper-barrier distance, Infra-red operation, indoor use


This modification was designed on request: some people prefer an audible alert instead of looking at the LED display, making easier the parking operation. The original Park-aid circuit was retained, but please note that the input pins of IC2B, IC2C and IC2D are reversed. LEDs D5, D6 and D7, as also resistors R12, R13 and R14 are omitted. IC2B, IC2C and IC2D outputs drive resistors R15, R16 and R17 through D8, D9 and D10 respectively, in order to change the time constant of a low frequency oscillator based on the 555 timer IC4. This allows the Piezo sounder to start beeping at about 2 times per second when bumper-wall distance is about 20 cm., then to increase the beeps to about 3 per second when bumper-wall distance is about 10 cm. and finally to increase further the beeps frequency to more than 4 beeps per second when the distance is about 6 cm. or less.

Park-Aid ModificationParts:

R15_____________3K3 1/4W Resistor
R16___________330K 1/4W Resistor
R17___________470K 1/4W Resistor
R18___________150K 1/4W Resistor
C6______________1µF 63V Electrolytic or Polyester Capacitor
D8,D9,D10____1N4148 75V 150mA Diodes
IC4_____________555 Timer IC
BZ1___________Piezo sounder (incorporating 3KHz oscillator)
Continue[...]

Monday, June 28, 2010

10W Audio Amplifier With Bass-Boost


This design is based on the 18 Watt Audio Amplifier, and was developed mainly to satisfy the requests of correspondents unable to locate the TLE2141C chip. It uses the widespread NE5532 Dual IC but, obviously, its power output will be comprised in the 9.5 - 11.5W range, as the supply rails cannot exceed ±18V. As amplifiers of this kind are frequently used to drive small loudspeaker cabinets, the bass frequency range is rather sacrificed. Therefore a bass-boost control was inserted in the feedback loop of the amplifier, in order to overcome this problem without quality losses. The bass lift curve can reach a maximum of +16.4dB @ 50Hz. In any case, even when the bass control is rotated fully counterclockwise, the amplifier frequency response shows a gentle raising curve: +0.8dB @ 400Hz, +4.7dB @ 100Hz and +6dB @ 50Hz (referred to 1KHz).

Amplifier with Bass-Boost:
10W Bass Boost Amplifier Circuit DiagramParts:

P1_________________22K Log.Potentiometer (Dual-gang for stereo)
P2________________100K Log.Potentiometer (Dual-gang for stereo)
R1________________820R 1/4W Resistor
R2,R4,R8____________4K7 1/4W Resistors
R3________________500R 1/2W Trimmer Cermet
R5_________________82K 1/4W Resistor
R6,R7______________47K 1/4W Resistors
R9_________________10R 1/2W Resistor
R10__________________R22 4W Resistor (wirewound)
C1,C8_____________470nF 63V Polyester Capacitor
C2,C5_____________100µF 25V Electrolytic Capacitors
C3,C4_____________470µF 25V Electrolytic Capacitors
C6_________________47pF 63V Ceramic or Polystyrene Capacitor
C7_________________10nF 63V Polyester Capacitor
C9________________100nF 63V Polyester Capacitor
D1______________1N4148 75V 150mA Diode
IC1_____________NE5532 Low noise Dual Op-amp
Q1_______________BC547B 45V 100mA NPN Transistor
Q2_______________BC557B 45V 100mA PNP Transistor
Q3_______________TIP42A 60V 6A PNP Transistor
Q4_______________TIP41A 60V 6A NPN Transistor
J1__________________RCA audio input socket

Power Supply :
Power Supply Circuit DiagramPower supply parts:

R11_________________1K5 1/4W Resistor
C10,C11__________4700µF 25V Electrolytic Capacitors
D2________________100V 4A Diode bridge
D3________________5mm. Red LED
T1________________220V Primary, 12 + 12V Secondary 24-30VA Mains transformer
PL1_______________Male Mains plug
SW1_______________SPST Mains switch

Notes:
  • Can be directly connected to CD players, tuners and tape recorders.
  • Schematic shows left channel only, but C3, C4, IC1 and the power supply are common to both channels.
  • Numbers in parentheses show IC1 right channel pin connections.
  • A log type for P2 will ensure a more linear regulation of bass-boost.
  • Do not exceed 18 + 18V supply.
  • Q3 and Q4 must be mounted on heatsink.
  • D1 must be in thermal contact with Q1.
  • Quiescent current (best measured with an Avo-meter in series with Q3 Emitter) is not critical.
  • Set the volume control to the minimum and R3 to its minimum resistance.
  • Power-on the circuit and adjust R3 to read a current drawing of about 20 to 25mA.
  • Wait about 15 minutes, watch if the current is varying and readjust if necessary.
  • A correct grounding is very important to eliminate hum and ground loops. Connect to the same point the ground sides of J1, P1, C2, C3 &C4. Connect C9 to the output ground.
  • Then connect separately the input and output grounds to the power supply ground.
Technical data:
Output power:
10 Watt RMS into 8 Ohm (1KHz sinewave)
Sensitivity:
115 to 180mV input for 10W output (depending on P2 control position)
Frequency response:
See Comments above
Total harmonic distortion @ 1KHz:
0.1W 0.009% 1W 0.004% 10W 0.005%
Total harmonic distortion @ 100Hz:
0.1W 0.009% 1W 0.007% 10W 0.012%
Total harmonic distortion @ 10KHz:
0.1W 0.056% 1W 0.01% 10W 0.018%
Total harmonic distortion @ 100Hz and full boost:
1W 0.015% 10W 0.03%
Max. bass-boost referred to 1KHz:
400Hz = +5dB; 200Hz = +7.3dB; 100Hz = +12dB; 50Hz = +16.4dB; 30Hz = +13.3dB
Unconditionally stable on capacitive loads
Continue[...]

Sunday, June 27, 2010

Mains Pulser

The pulser is intended to switch the mains voltage on and off at intervals between just under a second and up to 10 minutes. This is useful, for instance, when a mains-operated equipment is to be tested for long periods, or for periodic switching of machinery. Transformer Tr1, the bridge rectifier , and regulator IC1 provide a stable 12V supply rail for IC2 and the relay. The timer is arranged so that the period-determining capacitor can be charged and discharged independently. Four time ranges can be selected by selecting capacitors with the aid of jumpers. Short-circuiting positions 1 and 2 gives the longest time, and short-circuiting none the shortest.

Mains Pulser Circuit DiagramIn the latter case, the 10µF capacitor at pins 2 and 6 of the timer IC determines the time with the relevant resistors. The value of this capacitor may be chosen slightly lower. The two preset potentiometers enable the on and off periods to be set. The 1k resistor in series with one of the presets determines the minimum discharge time. The timer IC switches a relay whose double-pole contacts switch the mains voltage. The LEDs indicate whether the mains voltage is switched through (red) or not (green). The 100mA slow fuse protects the mains transformer and low-voltage circuit. The 4 A medium slow fuse protects the relay against overload.
Continue[...]

Battery-Charging Indicator For Mains Adaptor

Although you may well be the proud owner of the very latest NiCd battery charger, you may still come across the odd 'incompatible' battery, for example, one having a rare voltage or requiring a much higher charging current than can be supplied by your off-the-shelf charger. In these cases, many of you will resort to an adjustable mains adaptor (say, a 500-mA type) because that is probably the cheapest way of providing the direct voltage required to charge the battery. Not fast and not very efficient, this 'rustic' charging system works, although subject to the following restrictions:


  1. You should have some idea of the charging current. In case you use an adaptor which is adjustable but of the unregulated, low output current type, you can adjust the current by adjusting the output voltage.
  2. You have to know if the current actually flows through the battery. A current-detecting indicator is therefore much to be preferred over a voltage indicator.
  3. To prevent you from forgetting all about the charging cycle, the indicator should be visible from wherever you pass by frequently. Using the circuit shown here, the LED lights when the baseemitter potential of the transistor exceeds about 0.2 V. Using a resistor of 1 ? as suggested this happens at a current of about 200 mA, or about 40 mA if R1 is changed to 4.7?. The voltage drop caused by this indicator can never exceed the base-emitter voltage (UBE) of the transistor, or about 0.7V. Even if the current through R1 continues to increase beyond the level at which UBE = 0.7 V, the base of the transistor will 'absorb' the excess current. The TO-220 style BU406 transistor suggested here is capable of accepting base currents up to 4A. Using this charging indicator you have overcome the restrictions 2 and 3 mentioned above.
Continue[...]

12/24/48 V D.C. Tester

The present tester is intended primarily for testing the 24 V electrical circuits found on most pleasure craft. However, if the resistors are given different values, the circuit may, of course, be used for other voltage ranges. For 12 V, the value of the resistors should be 1.2 k?, and for 48 V, 4.7 k?. The tester should be connected to the +ve and –ve voltage rails with test clips or crocodile clips, whereupon the test probe is placed on the point to be tested. When the potential at the point is positive, the red LED lights; if it is negative, the green one does. If the supply is not connected to earth, the tester may be used as ground-leak tester. In this situation, one of the LEDs lights when the test probe touches a point at earth potential and there is a leakage.

12/24/48 V D.C. Tester Circuit Diagram
Continue[...]

Antenna Tuning Unit (ATU) For 27-MHz CB Radios

This antenna tuning unit (ATU) enables half-wavelength or longer wire antennas to be matched to the 50-? antenna input of 27-MHz Citizens’ Band (CB) rigs. The ATU is useful in those cases where a wire antenna is less obtrusive than a roof-mounted ‘vertical’ or ground-plane. It is also great for ‘improvised’ antennas used by active CB users on camping sites and the like because it allows a length of wire to be used as a fairly effective antenna hung between, say, a tree branch at one side and a tent post, at the other. Obviously, the wire ends then have to be isolated using, for example, short lengths of nylon wire. It is even possible to use the ATU to tune a length of barbed wire to 27 MHz. The coil in the circuit consists of 11 turns of silver-plated copper wire with a diameter of about 1 mm (SWG20).

The internal diameter of the coil is 15 mm, and it is stretched to a length of about 4 cm. The tap for the antenna cable to the CB radio is made at about 2 turns from the cold (ground) side. Two trimmer capacitors are available for tuning the ATU. The smaller one, C1, for fine tuning, and the larger one, C2, for coarse tuning. The trimmers are adjusted with the aid of an in-line SWR (standing-wave ratio) meter which most CB enthusiasts will have, or should be able to obtain on loan. Select channel 20 on the CB rig and set C1 and C3 to mid-travel. Press the PTT button and adjust C2 for the best (that is, lowest) SWR reading. Next, alternately adjust C3 and C2 until you get as close as possible to a 1:1 SWR reading.

Antenna Tuning Unit (ATU) For 27-MHz CB RadiosC1 may then be tweaked for an even better value. No need to re-adjust the ATU until another antenna is used. In case the length of the wire antenna is exactly 5.5 metres, then C3 is set to maximum capacitance. Although the ATU is designed for half-wavelength or longer antennas, it may also be used for physically shorter antennas. For example, if antenna has a physical length of only 3 metres, then the remaining 2.5 metres has to be wound on a length of PVC tubing. This creates a so-called BLC (base-loaded coil) electrically shortened antenna. In practice, the added coil can be made somewhat shorter than the theoretical value, so the actual length is best determined by trial and error. Finally, the ATU has to be built in an all-metal case to prevent unwanted radiation. The trimmers are than accessed through small holes. The connection to the CB radio is best made using an SO239 (‘UHF’) or BNC style socket on the ATU box and a short 50-W coax cable with matching plugs.
Continue[...]

Ten-Band Equalizer

The equalizer presented in this article is suitable for use with hi-fi installations, public-address systems. mixers and electronic musical instruments. The relay contacts at the inputs and outputs, in conjunction with S2, enable the desired channel to be selected. The input may be linked directly to the output, if wanted. The input impedance and amplification of the equalizer are set with S1 and S3. The audio frequency spectrum of 31 Hz to 16 kHz is divided into ten bands. Ten bands require ten filters, of which nine are passive and one active. The passive filters are identical in design and differ only in the value of the relevant inductors and capacitors. The requisite characteristics of the filters are achieved by series and parallel networks.

The filter for the lowest frequency band is an active one to avoid a very large value of inductance. It is based in a traditional manner on op amp A1. The inductors used in the passive filters are readily available small chokes. The filter based on L1 and L2 operates at about the lowest frequency (62 Hz) that can be achieved with standard, passive components. The Q(uality) factor of the filters can, in principle, be raised slightly by increasing the value of R19 and R23, as well as that of P1–P10, but that would be at the expense of the noise level of op amp IC1. With component values as specified, the control range is about ±11 dB, which in most case will be fine. A much larger range is not attainable without major redesign.

Ten-Band EqualizerThe input level can be adjusted with P1, which may be necessary for adjusting the balance between the channels or when a loudness control is used in the output amplifiers. Several types of op amp can be used:in the prototype, IC1 is an LT1007, and IC2, an OP275. Other suitable types for IC1 are OP27 or NE5534; and for IC2, AD712, LM833 and NE5532. If an NE5534 is used for IC1, C2 is needed; in all other cases, not. The circuit needs to be powered by a regulated, symmetrical 15 V supply. It draws a current of not more than about 10mA.
Continue[...]

Simple Moisture Detector

The function of this circuit is to sound a buzzer, or, optionally, actuate a relay, when a certain moisture level is detected between a pair of probes. The circuit has a ‘memory’ in the form of a flip-flop, IC1a-IC1b, which enables or disables a tone oscillator, IC1c. The flip-flop is reset either by C1 and C2 when the supply voltage appears, or by push-button S1. This may not reset the alarm, however, which will sound again until the probes are ‘dry’. The (passive) buzzer may be replaced by a relay actuating an externally connected sounder, lamp or other high-power signalling device. Because the duty factor of the coil voltage is about 0.5, the relay should be a type with a coil voltage which is lower than the supply voltage.

Simple Moisture Detector Circuit DiagramA 6-volt type is suggested if the circuit is powered from a 9-volt supply. The circuit has a modest standby current consumption of between 4 and 5 mA. This rises to about 40 mA when the relay is actuated. The supply voltage is uncritical and may be anything between 3 V and 15 V. Note, however, that it may not be possible to use a relay if a supply voltage lower than about 8 V is employed. If the circuit is found to be too sensitive, the value of resistor R2 may be decreased.
Continue[...]

Speech Eroder

Nowadays, the speech quality on our telephone systems is generally very good, irrespective of distance. However, there are occasions, for instance, in an amateur stage production, or just for fun, when it is desired to reproduce the speech quality of yesteryear. The eroder circuit accepts an acoustic (via an electret micro-phone) or electrical signal. The signals are applied to the circuit inputs via C1 and C2, which block any direct voltage. The input cables should be screened. The signals are brought to (about) the same level by variable potential dividers P1-R1-R4 and P2-R2-R3, and then applied to the base of transistor T1. The level of the combined signals is raised by this preamplifier. The preamplifier is followed by an active low-pass filter consisting of T2–T4, C3, C4, R6–R8, and P4.
Speech Eroder Circuit DiagramAlthough, strictly speaking, P3 serves merely to adjust the volume of the signal, its setting does affect the filter characteristic. Note, by the way, that the filter is a rarely encountered current-driven one in which C3 and C4 are the frequency-determining elements. It has a certain similarity with a Wien bridge. Transistors T3 and T4, and resistors R8 and P4 form a variable current sink. The position of P4 determines the slope of the filter characteristic and the degree of overshoot at the cut-off frequency. The low-pass filter is followed by an integrated amplifier, IC1, whose amplification is matched to the input of the electronic circuits connected to the eroder with P5. The final passive, third-order high-pass filter is designed to remove frequencies above about 300 Hz. The resulting output is of a typical nasal character, just as in telephones of the past.
Continue[...]

Sine Wave To TTL Converter

As the title implies, the present circuit is intended to convert sinusoidal input signals to TTL output signals. It can handle inputs of more than 100 mV and is suitable for use at frequencies up to about 80 MHz. Transistor T1, configured in a common-emitter circuit, is biased by voltage divider R3–R5 such that the potential across output resistor R1 is about half the supply voltage. When the circuit is driven by a signal whose amplitude is between 100 mV and TTL level (about 2 V r.m.s.), the circuit generates rectangular signals. The lowest frequencies that could be processed by the prototype were around 100 kHz at an input level of 100 mV, and about 10 kHz when the input signals were TTL level.

Sine Wave To TTL Converter Circuit DiagramResistor R6 holds the input resistance at about 50 Ω, which is the normal value in measurement techniques. It ensures that the effects of long coaxial cables on the signal are negligible. If the converter is used in a circuit with ample limits, R6 may be omitted, whereupon the input resistance rises to 300 Ω.
Continue[...]

Polarity Reverser

There are systems in which it is imperative that the supply voltage of, say, a motor, always has the correct polarity. It is, of course, possible to use a bridge rectifier for this, but if large currents are involved, this is not always possible. This may be because large voltage drops across diodes result in appreciable heat dissipation, or that the peak current exceeds the current rating of a diode. Fortunately, a good, inexpensive mechanical rectifier may be constructed with the aid of a relay. In the diagram, the supply voltage is applied to K1, while the motor that needs a supply with correct polarity is linked to K2. Provided fuse F1 is intact, a positive potential at terminal a of K1 will be applied to the positive terminal of K2. Diode D2 prevents the relay being energized.

Polarity Reverser Circuit DiagramWhen the polarity at K1 is reversed, the relay will be energized via D2. The relay contacts then interchange the connections to the terminals of K2 to ensure that the previous polarity of the supply to the load is retained. Diode D1 is a freewheeling diode for the relay coil. The type of relay to be used depends on the requisite operating voltage and the current through its contacts. Other parts of the circuit are not critical. It stands to reason that the circuit is not suitable for use with a small battery, since the relay coil draws a fairly large current.
Continue[...]

LED Lighting For Consumer Unit Cupboard

The consumer unit (or ‘electricity meter’) cupboard in some older houses is a badly lit place. If the bell transformer is also located in this cupboard, it may be used to provide emergency lighting by two high-current LEDs. These diodes are powered via a small circuit that switches over to four NiCd batteries when the mains fails. The output voltage of the bell transformer is rectified by bridge B1 and buffered by capacitor C1. The batteries are charged continuously with a current of about 7.5 mA via diode D1 and resistor R2. The base of transistor T1 is high via R3, so that the transistor is cut off. When the mains voltage fails, C1 is discharged via R1; when the potential across it has dropped to a given value, the battery voltage switches on T1 via R3 and R1, provided switch S1 is closed. When T1 is on, a current of some 20 mA flows through diodes D4 and D5. The light from these LEDs is sufficient to enable the defect fuse or the tripped circuit breaker to be located.

Continue[...]

Lead-Acid-Battery Regulator For Solar Panel Systems

The design of solar panel systems with a (lead-acid) buffer battery is normally such that the battery is charged even when there is not much sunshine. This means, however, that when there is plenty of sunshine, a regulator is needed to prevent the battery from being overcharged. Such controls usually arrange for the superfluous energy to be dissipated in a shunt resistance or simply for the solar panels to be short-circuited. It is, of course, an unsatisfactory situation when the energy derived from a very expensive system can, after all , not be used to the full. The circuit presented diverts the energy from the solar panel when the battery is fully charged to another user, for instance, a 12V ice box with Peltier elements, a pump for drawing water from a rain butt, or a 12V ventilator.

It is, of course, also possible to arrange for a second battery to be charged by the super-fluous energy. In this case, however, care must be taken to ensure that when the second battery is also fully charged , there is also a control to divert the superfluous energy. The shunt resistance needed to dissipate the superfluous energy must be capable of absorbing the total power of the panel, that is, in case of a 100W panel, its rating must be also 100 W. This means a current of some 6–8 A when the operating voltage is 12 V. When the voltage drops below the maximum charging voltage of 14.4V growing to reduced sunshine, the shunt resistance is disconnected by an n-channel power field effect transistor (FET), T1.

The disconnect point is not affected by large temperature fluctuations because of a reference voltage provided by IC1. The necessary comparator is IC2, which owing to R9 has a small hysteresis voltage of 0.5V. Capacitor C5 ensures a relatively slow switching process, although the FET is already reacting slowly owing to C4. The gradual switching prevents spurious radiation caused by steep edges of the switched voltage and also limits the starting current of a motor (of a possible ventilator). Finally, it prevents switching losses in the FET that might reach 25W, which would m a ke a heat sink unavoidable. Setting up of the circuit is fairly simple. Start by turning P1 so that its wiper is connected to R5.

When the battery reaches the voltage at which it will be switched off, that is, 13.8 – 14.4V, adjust P1 slowly until the output of comparator I C2 changes from low to high, which causes the load across T1 to be switched in. Potentiometer P1 is best a 10-turn model. When the control is switched on for the first time, it takes about 2 seconds for the electrolytic capacitors to be charged. During this time, the output of the comparator is high, so that the load across T1 is briefly switched in. In case T1 has to switch in low-resistance loads, the BUZ11 may be replaced by an IRF44, which can handle twice as much power (150 W) and has an on-resistance of only 24 mR. Because of the very high currents if the battery were short-circuited, it is advisable to insert a suitable fuse in the line to the regulator. The circuit draws a current of only 2 mA in the quiescent state and not more than 10mA when T1 is on.
Continue[...]

Saturday, June 26, 2010

Fast Voltage-Driven Current Source

The current source in the diagram, which react very fast to changes in the input signal, may be used, for instance, in certain measurements. Differential amplifier IC1 ensures that the potential across R2 is equal to the input voltage: Iout =Uin/R2. The bandwidth, B, is given by B=R2 f /RL, where f=80 MHz, and the load impedance RL≥ R2 (both in ohms). The input is terminated into R1 to give the usual 50Ω impedance required by measuring instruments. At the same time, this resistor sets the d.c. operating point. If the link to the driving signal source is short and d.c. coupled, R1 may be omitted. The peak voltage between pins 1 and 2 of the IC is limited to 2.1 V to prevent too large a current at the output. Therefore, the peak output current is 2.1/100=21 mA.
Continue[...]

General-Purpose Alarm

The alarm may be used for a variety of applications, such as frost monitor, room temperature monitor, and so on. In the quiescent state, the circuit draws a current of only a few microamperes, so that, in theory at least, a 9 V dry battery (PP3, 6AM6, MN1604, 6LR61) should last for up to ten years. Such a tiny current is not possible when ICs are used, and the circuit is therefore a discrete design. Every four seconds a measuring bridge, which actuates a Schmitt trigger, is switched on for 150 ms by a clock generator. In that period of 150 ms, the resistance of an NTC thermistor, R11, is compared with that of a fixed resistor. If the former is less than the latter, the alarm is set off.

When the circuit is switched on, capacitor C1 is not charged and transistors T1–T3 are off. After switch-on, C1 is charged gradually via R1, R7, and R8, until the base voltage of T1 exceeds the threshold bias. Transistor T1 then comes on and causes T2 and T3 to conduct also. Thereupon, C1 is charged via current source T1-T2-D1, until the current from the source becomes smaller than that flowing through R3 and T3 (about 3 µA). This results in T1 switching off, so that, owing to the coupling with C1, the entire circuit is disabled. Capacitor C1 is (almost) fully charged, so that the anode potential of D1 drops well below 0 V. Only when C1 is charged again can a new cycle begin.

General-Purpose Alarm Circuit Diagram
t is obvious that the larger part of the current is used for charging C1. Gate IC1a functions as impedance inverter and feedback stage, and regularly switches on measurement bridge R9–R12-C2-P1 briefly. The bridge is terminated in a differential amplifier, which, in spite of the tiny current (and the consequent small transconductance of the transistors) provides a large amplification and, therefore, a high sensitivity. Resistors R13 and R15 provide through a kind of hysteresis a Schmitt trigger input for the differential amplifier, which results in unambiguous and fast measurement results. Capacitor C2 compensates for the capacitive effect of long cables between sensor and circuit and so prevents false alarms.

If the sensor (R11) is built in the same enclosure as the remainder of the circuit (as, for instance, in a room temperature monitor), C2 and R13 may be omitted. In that case,C3 willabsorb any interference signals and so prevent false alarms. To prevent any residual charge in C3 causing a false alarm when the bridge is in equilibrium, the capacitor is discharged rapidly via D2 when this happens. Gates IC1c and IC1d form an oscillator to drive the buzzer (an a.c. type). Owing to the very high impedance of the clock, an epoxy resin (not pertinax) board must be used for building the alarm. For the same reason, C1 should be a type with very low leakage current. If operation of the alarm is required when the resistance of R11 is higher than that of the fixed resistor, reverse the connections of the elements of the bridge and thus effectively the inverting and non-inverting inputs of the differential amplifier.

An NTC thermistor such as R11 has a resistance at –18 °C that is about ten times as high as that at room temperature. It is, therefore, advisable, if not a must, when precise operation is required, to consult the data sheet of the device or take a number of test readings. For the present circuit, the resistance at –18 °C must be 300–400 kΩ. The value of R12 should be the same. Preset P1 provides fine adjustment of the response threshold. Note that although the prototype uses an NTC thermistor, a different kind of sensor may also be used, provided its electrical specification is known and suits the present circuit.
Continue[...]

Playback Amplifier For Cassette Deck

For some time now, there have been a number of tape cassette decks available at low prices from mail order businesses and electronics retailers. Such decks do not contain any electronics, of course. It is not easy to build a recording amplifier and the fairly complex magnetic biasing circuits, but a playback amplifier is not too difficult as the present one shows. The stereo circuits in the diagram, in conjunction with a suitable deck, form a good-quality cassette player. The distortion and frequency range (up to 23 kHz) are up to good standards. Moreover, the circuit can be built on a small board for incorporation with the deck in a suitable enclosure. Both terminals of coupling capacitor C1 are at ground potential when the amplifier is switched on.

Cassette Deck Playback Amplifier Circuit DiagramBecause of the symmetrical ±12 V supply lines, the capacitor will not be charged. If a single supply is used, the initial surge when the capacitor is being charged causes a loud click in the loudspeaker and, worse, magnetizes the tape. The playback head provides an audio signal at a level of 200–500 mV. The two amplifiers raise this to line level, not linearly, but in accordance with the RIAA equalization characteristic for tape recorders. Broadly speaking, this characteristic divides the frequency range into three bands:
  • Up to 50 Hz, corresponding to a time constant of 3.18 ms, the signal is highly and linearly amplified.
  • Between 50 Hz and 1.326 kHz, corresponding to a time constant of 120 µs, for normal tape, or 2.274 kHz, corresponding to a time constant of 70 µs, for chromium dioxide tape, the signal is amplified at a steadily decreasing rate.
  • Above 1.326 kHz or 2.274 kHz, as the case may be, the signal is slightly and linearly amplified. This characteristic is determined entirely by A1 (A1’). To make the amplifier suitable for use with chromium dioxide tape, add a double-pole switch (for stereo) to connect a 2.2 kΩ resistor in parallel with R3 (R3’). The output of A1 (A1’) is applied to a passive high-pass rumble filter, C3-R5 (C3’-R5’) with a very low cut-off frequency of 7 Hz. The components of this filter have exactly the same value as the input filter, C1-R1 (C1’-R1’). The second stage, A2 (A2’) amplifies the signal ´100, that is, to line level (1V r.m.s.).
Continue[...]

Treble Tone Control

The treble control works in a similar manner as the bass control elsewhere in this site, but contains several modifications, of course. One of these is the series network C1-C2– R1– R1 1. The d.c. operating point of IC3 is set with resistors R12 and R13. To ensure that these resistors do not (adversely) affect the control characteristics, they are coupled to the junction of R9 and R1 0. In this way they only affect the low-frequency noise and the load of the opamp. Their value of 10 kΩ is a reasonable compromise. The functions of switches S1– S3 are identical to those of their counterparts in the bass tone control; their influence is seen clearly in the characteristics.

Treble Tone Control Circuit DiagramGood symmetry between the left-hand and right-hand channels is obtained by the use of 1% versions of R1– R1 3 and C1, C2. The value of resistors R2– R1 0 is purposely different from that of their counterparts in the bass tone control. In the present circuit, the control range starts above 20 kHz. To make sure that a control range of 1 0 dB is available at 20 kHz, the nominal amplification is 3.5 (11 dB ). The control circuit draws a current of about ±10mA.
Continue[...]

Accurate Bass Tone Control

A difficult problem in the design of conventional stereo tone controls is obtaining synchronous travel of the potentiometers. Even a slight error in synchrony can cause phase and amplitude differences between the two channels. Moreover, linear potentiometers are often used in such controls, and these give rise to unequal performance by human hearing. Special potentiometers that counter these difficulties are normally hard to obtain in retail shops. A good alternative is a control based on a rotary switch and a discrete potential divider. The problem with this that for good tone control more than six steps are needed, and switches for this are also not readily available. Fortunately, electronic circuits can remove these difficulties.

Accurate Bass Tone Control Circuit DiagramThe analogue selectors used may be driven by mechanical switches, standard logic circuit or a microcontroller. The selectors used in the present circuit are Type SSM2404 versions from Analogue Devices, which switch noiselessly. Each IC contains four selectors, so that a total of eight are used. The step size is 1.25 dB at 20 Hz with a maximum of 10dB . The circuit can be mirrored with S1, which means that a selection may be made of amplification or attenuation of bass frequencies. The user can choose between attenuation only and extending the range by dividing R9. The control can be bridged by switch S2.

To prevent the output impedance of the circuit having too much effect on the operation of the circuit, the output impedance must be ≤ 10 Ω. Resistor R1 2 protects the circuit against too small a load. At maximum bass amplification at Ui n = 1 V r.m.s., the THD+N <0.001% for a frequency range of 20 Hz to 20kHz and and a bandwidth of 80kHz. The circuit draws a current of about 10 mA.
Continue[...]

Input Impedance Booster Circuit Diagram

The input impedance of a.c.-coupled op amp circuits depends almost entirely on the resistance that sets the d.c. operating point. If CMOS op amps are used, the input is high, in current op amps up to 10 MΩ. If a higher value is needed, a bootstrap may be used, which enables the input impedance to be boosted artificially to a very high value. In the diagram, resistors R1 plus R2 form the resistance that sets the d.c. operating point for opamp IC1. If no other actions were taken, the input impedance would be about 20MΩ. However, part of the input signal is fed back in phase, so that the alternating current through R1 is smaller. The input impedance, Zin, is then: Zin=(R2+R3)/R3)(R1+R2). With component values as specified, Zin has a value of about 1GΩ. The circuit draws a current of about 3mA.

Input Impedance Booster Circuit Diagram
Continue[...]

Light From Flat Batteries

Button or coin cells that appear to be flat in their normal function may yet be discharged further. This is because in many cases, for instance, a quartz watch stops to function correctly when the battery voltage drops to 1.2 V, although it can be discharged to 0.8 V. Normally, however, not much can be done with a single cell. In the present circuit, a super-bright LED is made to work from voltages between 1 V and 1.2 V. This may be used for map-reading lights, a keyhole light, or warning light when jogging in the dark. When a yellow, superbright LED is used with a fresh battery, it may be used as an emergency reading light or to read a front door nameplate in the dark or to find an non-illuminated doorbell.

light from flat batteriesNormally, LEDs light at voltages under 1.5 V (red) or 1.6–2.2 V (other colours) only dimly or not at all. The present circuit uses a multivibrator of discrete design that oscillates at about 14 kHz. The collector resistor of one of the transistors has been replaced by a fixed inductor, which is shunted by the LED. Because of the self-inductance, the voltage across the LED is raised, so that the diode lights dimly at voltages as low as 0.6 V and becomes bright at voltages from about 0.8 V up. The circuit requires a supply voltage of 0.6–3 V and draws a current of about 18 mA at 1 V.
Continue[...]

1W BTL Audio Amplifier

The TDA8581(T) from Philips Semiconductors is a 1-watt Bridge Tied Load (BTL) audio power amplifier capable of delivering 1 watt output power into an 8-Wload at THD (total harmonic distortion) of 10% and using a 5V power supply. The schematic shown here combines the functional diagram of the TDA8551 with its typical application circuit. The gain of the amplifier can be set by the digital volume control input. At the highest volume setting, the gain is 20 dB. Using the MODE pin the device can be switched to one of three modes: standby (MODE level between Vp and Vp–0.5 V), muted (MODE level between 1 V and Vp–1.4 V) or normal (MODE level less than 0.5 V). The TDA8551 is protected by an internal thermal shutdown protection mechanism. The total voltage loss for both MOS transistors in the complementary output stage is less than 1 V.

Circuit diagram:1-Watt BTL audio amplifierUsing a 5-V supply and an 8-W loudspeaker, an output power of 1 watt can be delivered. The volume control has an attenuation range of between 0 dB and 80 dB in 64 steps set by the 3-state level at the UP/DOWN pin: floating: volume remains unchanged; negative pulses: decrease volume; positive pulses: increase volume Each pulse at he Up/DOWN pin causes a change in gain of 80/64 = 1.25 dB (typical value). When the supply voltage is first connected, the attenuator is set to 40 dB (low volume), so the gain of the total amplifier is then –20 dB. Some positive pulses have to be applied to the UP/DOWN pin to achieve listening volume. The graph shows the THD as a function of output power. The maximum quiescent current consumption of the amplifier is specified at 10mA, to which should be added the current resulting from the output offset voltage divided by the load impedance.
Continue[...]

Variable PSU

A variable power supply with adjustable voltage and current outputs made with the L200 regulator. Using the versatile L200 voltage regulator, this power supply has independent voltage and current limits. The mains transformer has a 12volt, 2 amp rated secondary, the primary winding should equal the electricity supply in your country, which is 240V here in the UK. The 10k control is adjusts voltage output from about 3 to 15 volts, and the 47 ohm control is the current limit. This is 10mA minimum and 2 amp maximum. Reaching the current limit will reduce the output voltage to zero.

Variable PSU
Continue[...]

Telephone In-Use Indicator

This circuit will illuminate a LED if one of your telephones is in use. It should work in all countries (Including UK) that have a standing line voltage above 48 Volts DC. Please note that it is illegal to make a physical permanent connection to your telephone line in some countries (this includes the UK and Ireland). If building this circuit it is advisable to use a plugin cord so that the unit can be unplugged should a fault occur. If in doubt consult either your telephone or cable operator.

Telephone In-Use IndicatorIf all extension phones are on-hook and the line voltage is around 48 V, Q1 will conduct thus effectively shorting the gate of Q2 to its source, so it will be off and the LED will be disabled. Lifting the handset of any phone on the line causes the line voltage to drop to 5-15 V. The gate voltage of Q1, equal to some 6% of the line voltage, will then be too low and Q1 will be turned off. So Q2's gate is now biased at approximately 1/2 of the line voltage, Q2 turns on and the LED indicates that the line is in use. The circuit itself is practically invisible to the other telephone devices using the same line. LED1 must be low-current and its current-limiting resistor must be 2k2 or more.

The other components' ideal values may vary slightly, depending on the local telephone line parameters. The circuit is powered off the telephone line. If other types of MOSFETs are used, the 500k trimmer can be adjusted to ensure that Q1 is biased fully on while the line is not in use (LED1 off), and vice versa. If Q2 is not a BS108 but some other 200 V MOSFET with a higher G-S threshold voltage, it might be necessary to increase the value of the lower (or decrease the value of the upper) one of the two resistors connected to the gate of Q2. Plain (bipolar junction) transistors can be used instead and the circuit also works fine.

But the resistor values are then much lower - letting ten times more microamps of current pass through while the line is not in use, and even this MOSFET design still could not meet formal minimum on-hook DC resistance specifications. Both prototypes' PCBs were 4x1 cm. The current-limiting resistor for LED1 is 2k2 in both cases. DO NOT ground any of the leads or conducting surfaces in this circuit. A more reliable design would also include some kind of over-voltage protection etc.

Warning:

In their normal course of operation, telephone lines can deliver life-threatening voltages! Do not attempt to build any of the circuits/projects unless you have the expertise, skill and concentration that will help you avoid an injury. There are also legal aspects and consequences of connecting things to telephone lines, which vary from country to country. Keep away from telephone lines during a lightning storm!
Continue[...]