Tuesday, July 27, 2010
A 12V Car Charger For ASUS Eee Notebook

I thought at this stage it would be worth noting that a commercial car charger is now available for less than it cost me to build this from Expansys and is available in most countries (select your location on their site). It outputs 9.5v from 10-18v in at up to 2.5A. I’d actually recommend it over the design here is it seems to perform better at lower voltages (that one works down to 10V). However I have kept this page up as a reference for those who enjoy tinkering.
Design:
The charger included with the Eee is rated at 9.5v, 2.315A. There isn’t a fixed voltage regulator available for this exact voltage, so the circuit needed to be designed around an adjustable regulator. I decided to design the charger around the LM2576 “Simple Switcher” IC from National Semiconductor. There are tons of ICs like this available, many of which are a bit more efficient, however I selected this one because it is readily available and relatively cheap. It also has a lower drop-out voltage (~2V) than many other chips I looked at which is important when powering the device from a car or 12v SLA battery.



Parts List:
- 2x 10k resistor (R1 & R4)
- 2x 22k resistor (R2 & R3)
- 1x 1.5k resistor (R5)
- 1x 120μF 25v electrolytic capacitor (C1)
- 1x 2200μF 16v electrolytic capacitor (C2)
- 1x 1N5822 Schottky diode (or equivalent)
- 1x 9.1v 0.5W Zener diode
- 1x BC337 NPN transistor
- 1x LM2576T-ADJ IC
- 1x 100uH, 3A inductor (e.g. Pulse PE92108KNL)
- 25°C/W or better minature heatsink (e.g. Thermalloy 6073)
- Cigarette lighter plug with 3A fuse and 2.1mm DC plug (e.g. DSE P1692)
- 2.1mm DC chassis mount socket
- 1.7mm x 4.75mm (ID x OD) DC plug and cable
- Small plastic enclosure
Make yourself a PCB using the template below (600dpi). I simply laser print (or photocopy) the design onto OHP transparency sheet and then transfer the toner onto a blank PCB using a standard clothes iron. Any missing spots can be touched up with a permanent marker before etching. This is quick, usually results in pretty tidy boards and hardly costs a thing. There is a tutorial on a variation of this method at http://max8888.orcon.net.nz/pcbs.htm.



Connect the circuit to a 12v supply. If you use a car or lead acid battery ensure you have a 3A fuse fitted in line with the circuit before connecting it, just in case. Use your multimeter to check that the circuit outputs about 9.45v with no load. Connect a 12V, 21W lamp (e.g. old brake lamp from a car) or similar load across the output and check that the voltage doesn’t vary much. You should now be able to connect your Eee. The circuit design should be good for up to 2.5A, so there is plenty of margin for the Eee to fully function and charge its own battery off this supply.

Jaycar have a really cool carry bag with a shoulder strap designed to perfectly fit a 12v 7AH sealed lead acid battery. The bag features a fused cigarette lighter socket and is the perfect compliment to this charger. It works well with the Eee and provides hours of extra use. The shoulder strap means it’s not too bothersome to carry about and the charger circuit itself zips up neatly inside the bag. The under-voltage cut-off means the battery will never run completely flat, and the Eee will simply cut over to its internal battery once the SLA runs out. I got my SLA battery from Rexel as they are much cheaper (approx NZ$18 including GST last time I bought one) and they don’t sit as long on the shelf as many other suppliers.


This circuit is intended for people who have had experience in constructing electronic projects before. The circuit design and build process are provided simply as a reference for other people to use and I take no responsibility for how they are used. If you proceed with building and/or using this design you do so entirely at your own risk. You are free to use the content on this page as you wish, however I do ask that you include a link or reference back to this page if you distribute or publish any of the content to others.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.